307 research outputs found

    Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms

    Get PDF
    BACKGROUND: HSP90 proteins are essential molecular chaperones involved in signal transduction, cell cycle control, stress management, and folding, degradation, and transport of proteins. HSP90 proteins have been found in a variety of organisms suggesting that they are ancient and conserved. In this study we investigate the nuclear genomes of 32 species across all kingdoms of organisms, and all sequences available in GenBank, and address the diversity, evolution, gene structure, conservation and nomenclature of the HSP90 family of genes across all organisms. RESULTS: Twelve new genes and a new type HSP90C2 were identified. The chromosomal location, exon splicing, and prediction of whether they are functional copies were documented, as well as the amino acid length and molecular mass of their polypeptides. The conserved regions across all protein sequences, and signature sequences in each subfamily were determined, and a standardized nomenclature system for this gene family is presented. The proeukaryote HSP90 homologue, HTPG, exists in most Bacteria species but not in Archaea, and it evolved into three lineages (Groups A, B and C) via two gene duplication events. None of the organellar-localized HSP90s were derived from endosymbionts of early eukaryotes. Mitochondrial TRAP and endoplasmic reticulum HSP90B separately originated from the ancestors of HTPG Group A in Firmicutes-like organisms very early in the formation of the eukaryotic cell. TRAP is monophyletic and present in all Animalia and some Protista species, while HSP90B is paraphyletic and present in all eukaryotes with the exception of some Fungi species, which appear to have lost it. Both HSP90C (chloroplast HSP90C1 and location-undetermined SP90C2) and cytosolic HSP90A are monophyletic, and originated from HSP90B by independent gene duplications. HSP90C exists only in Plantae, and was duplicated into HSP90C1 and HSP90C2 isoforms in higher plants. HSP90A occurs across all eukaryotes, and duplicated into HSP90AA and HSP90AB in vertebrates. Diplomonadida was identified as the most basal organism in the eukaryote lineage. CONCLUSION: The present study presents the first comparative genomic study and evolutionary analysis of the HSP90 family of genes across all kingdoms of organisms. HSP90 family members underwent multiple duplications and also subsequent losses during their evolution. This study established an overall framework of information for the family of genes, which may facilitate and stimulate the study of this gene family across all organisms

    学会抄録

    Get PDF
    BackgroundMany developing countries are experiencing rapid ecological changes such as deforestation and shifting agricultural practices. These environmental changes may have an important consequence on malaria due to their impact on vector survival and reproduction. Despite intensive deforestation and malaria transmission in the China-Myanmar border area, the impact of deforestation on malaria vectors in the border area is unknown.MethodsWe conducted life table studies on Anopheles minimus larvae to determine the pupation rate and development time in microcosms under deforested, banana plantation, and forested environments.ResultsThe pupation rate of An. minimus was 3.8 % in the forested environment. It was significantly increased to 12.5 % in banana plantations and to 52.5 % in the deforested area. Deforestation reduced larval-to-pupal development time by 1.9-3.3 days. Food supplementation to aquatic habitats in forested environments and banana plantations significantly increased larval survival rate to a similar level as in the deforested environment.ConclusionDeforestation enhanced the survival and development of An. minimus larvae, a major malaria vector in the China-Myanmar border area. Experimental determination of the life table parameters on mosquito larvae under a variety of environmental conditions is valuable to model malaria transmission dynamics and impact by climate and environmental changes

    Fitness consequences of Anopheles gambiae population hybridization

    Get PDF
    BACKGROUND: The use of transgenic mosquitoes with parasite inhibiting genes has been proposed as an integral strategy to control malaria transmission. However, release of exotic transgenic mosquitoes will bring in novel alleles along with parasite-inhibiting genes that may have unknown effects on native populations. Thus it is necessary to study the effects and dynamics of fitness traits in native mosquito populations in response to the introduction of novel genes. This study was designed to evaluate the dynamics of fitness traits in a simulation of introduction of novel alleles under laboratory conditions using two strains of Anopheles gambiae: Mbita strain from western Kenya and Ifakara strain from Tanzania. METHODS: The dynamics of fitness traits were evaluated under laboratory conditions using the two An. gambiae strains. These two geographically different strains were cross-bred and monitored for 20 generations to score fecundity, body size, blood-meal size, larval survival, and adult longevity, all of which are important determinants of the vector's potential in malaria transmission. Traits were analysed using pair-wise analysis of variance (ANOVA) for fecundity, body size, and blood-meal size while survival analysis was performed for larval survival and adult longevity. RESULTS: Fecundity and body size were significantly higher in the progeny up to the 20(th )generation compared to founder strains. Adult longevity had a significantly higher mean up to the 10(th )generation and average blood-meal size was significantly larger up to the 5(th )generation, indicating that hybrids fitness is enhanced over that of the founder strains. CONCLUSION: Hybridization of the two mosquito populations used in this study led to increased performance in the fitness traits studied. Given that the studied traits are important determinants of the vector's potential to transmit malaria, these results suggest the need to release genetically modified mosquitoes that have the same or very similar backgrounds to the native populations

    Plasmodium falciparum Genetic Diversity in Western Kenya Highlands

    Get PDF
    The present study examined the genetic diversity and population structure of Plasmodium falciparum in western Kenya by analyzing the polymorphism of 12 microsatellite loci and two antigen loci. Malaria in highland areas is unstable and epidemic whereas malaria in lowland areas is endemic. Transmission intensity and malaria prevalence are substantially lower in the highlands than in the lowlands. Despite that the highland parasite populations exhibited reduced number of alleles, lower expected heterozygosity, and infection complexity in comparison to the surrounding lowland population, genetic diversity of the highland populations remained high in comparison to parasites from other meso-endemic regions. More than 70% of infections from western Kenya highland study sites were mixed genotype infections. Small but statistically significant genetic differentiation between highland and lowland populations was detected. These findings are discussed in the context of human travel and local transmission in the study area

    Comparative Transcriptome Analyses of Deltamethrin-Resistant and -Susceptible Anopheles gambiae Mosquitoes from Kenya by RNA-Seq

    Get PDF
    We are thankful to the reviewers for helpful comments. We thank Judith H. Willis for providing information on cuticular genes; Tian Zhen for helping in bioinformatics analyses; Osvaldo Marinotti, Anthony A. James and Joshua Hartsel for helpful discussions and the personnel of KERMI for mosquito collection and rearing.Conceived and designed the experiments: MB GY. Performed the experiments: MB GY YA FA DZ. Analyzed the data: MB WAD GZ JL. Contributed reagents/materials/analysis tools: AG YA FA. Wrote the paper: MB GY.Malaria causes more than 300 million clinical cases and 665,000 deaths each year, and the majority of the mortality and morbidity occurs in sub-Saharan Africa. Due to the lack of effective vaccines and wide-spread resistance to antimalarial drugs, mosquito control is the primary method of malaria prevention and control. Currently, malaria vector control relies on the use of insecticides, primarily pyrethroids. The extensive use of insecticides has imposed strong selection pressures for resistance in the mosquito populations. Consequently, resistance to pyrethroids in Anopheles gambiae, the main malaria vector in sub-Saharan Africa, has become a major obstacle for malaria control. A key element of resistance management is the identification of resistance mechanisms and subsequent development of reliable resistance monitoring tools. Field-derived An. gambiae from Western Kenya were phenotyped as deltamethrin-resistant or -susceptible by the standard WHO tube test, and their expression profile compared by RNA-seq. Based on the current annotation of the An. gambiae genome, a total of 1,093 transcripts were detected as significantly differentially accumulated between deltamethrin-resistant and -susceptible mosquitoes. These transcripts are distributed over the entire genome, with a large number mapping in QTLs previously linked to pyrethorid resistance, and correspond to heat-shock proteins, metabolic and transport functions, signal transduction activities, cytoskeleton and others. The detected differences in transcript accumulation levels between resistant and susceptible mosquitoes reflect transcripts directly or indirectly correlated with pyrethroid resistance. RNA-seq data also were used to perform a de-novo Cufflinks assembly of the An. gambiae genome.Yeshttp://www.plosone.org/static/editorial#pee
    corecore